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Abstract: 
This paper is concerned with the design and development 
of a simple fuzzy system for modeling of ill-defined 
dynamical systems. This system, which is represented as a 
feed forward neural network, is able to incorporate 
qualitative and quantitative information. Supervised 
linear back propagation learning algorithm has been 
applied to model a system through identifying the fuzzy 
parameters. This adaptive fuzzy system is implemented as 
an identifier of dynamical systems.  The system 
performance has been evaluated for different simulated 
systems to demonstrate the application of the proposed 
system to identify the dynamics of linear and nonlinear 
time-invariant and time-variant systems. 
 

1.  Introduction: 
 
Along with increased process complexity the abstraction 
and uncertainty are increased in the models, therefore 
their mathematical representation becomes very difficult. 
One significant approach in dealing with the major 
changes and uncertainty in dynamical processes is 
through artificial intelligence (AI), where one of the aims 
of AI is to replace human beings carrying out precise 
tasks by machine and hence the link between AI and 
control theory is strong. Intelligence in a system reefers to 
its ability to learn or adapt, and to modify its functional 
dependencies in response to new experiences or due to 
changes in the functional relationship [1,2]. 
Learning is an integral part of any intelligent system and 
exists at many levels of abstraction. At the guidance and 
servo levels, learning algorithms have been studied in the 
adaptive control field for many years, and these have been 
complemented by research into adaptive fuzzy and neural 
networks[3]. 
The proposed approach handles an architecture which is 
somehow similar to that employed by Takagi and 
Sugeno[4], and Kang[5] respectively, where they tried to 
introduce fuzzy rules from observation and adaptation. 
Unlike the methods used by them, the approach is based 

on neural network theory for training the fuzzy system in 
parameter tuning phase. 
The rest of this paper is organized in four sections. The 
architecture of the adaptive fuzzy system and learning 
algorithm is presented in section 2. Section 3 outlines the 
resulting adaptive fuzzy system used as an identifier for 
dynamical systems. In section 4, the fuzzy identifier 
ability has been evaluated using several simulations. 
Finally, the conclusions are presented in section 5. 
 

2. Adaptive fuzzy system: 
 
The fundamental configuration of a fuzzy logic system is 
given in figure 1. It consists of four basic blocks; the 
fuzzy rule base, the fuzzy inference engine, the fuzzifier, 
and the defuzzifier. 
 

Figure 1. Basic Configuration of a Fuzzy System 
 
Different interpretations for the fuzzy IF-THEN rules 
result in different mappings of the fuzzy inference engine, 
also there are different types of fuzzifier and defuzzifier. 
Several combinations of fuzzy inference engine, fuzzifier, 
and defuzzifier may constitute useful logic system. If the 
fuzzy logic system can be represented as a feed forward 
network, then the idea of back propagation training 
algorithm can be used to train them. 

 
2.1.  Adaptive fuzzy system structure: 
 
The most useful class of fuzzifier is the center average 
[2,6], of the form; 

x in U y in V
Defuzzifier

Fuzzy
Rule Base

Fuzzy
InferenceFuzzifier
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where M is the number of fuzzy rules, yj is the center of 
fuzzy set Fj , which is a point in the universe of discourse 
V when  µFj (y) achieves its maximum value, and  µFj (y)  
is given by a product inference engine. Hence using 
product operator, equation 1 becomes; 
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where  n  is the number of input variables. 
 
In order to develop training algorithms for this fuzzy logic 
system, the functional form of µFi (xi) must be specified. 
The bell-shaped membership function, based on the 
normal distribution of the grades of the membership  [7,8] 
is proposed, i.e. the membership function will be given 
by: 
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where mi and  σσσσi are the center and width of the bell-
shaped function of the ith  input variable. Combining 
equations 2 and 3, the overall function of the fuzzy logic 
system is; 
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This equation represents a fuzzy logic system with center 
average defuzzifier, product inference rule, non-singleton 
fuzzifier, and bell-shaped membership function. Equation 
4 can be implemented on a Forward Neural Network 
(FNN). This connectionist model machines the  

 

Figure 2. Adaptive Fuzzy System as an FNN. 
 

approximate reasoning of fuzzy logic into a five layer 
neural network structure [9], as illustrated in figure 2. 
Associated with each node in a typical neural network is 
an integration function, which serves to combine 
information or activation from the other nodes. This 
function L

iX provides the net input of the ith node in layer 
L. A second action taken by each node is to output an 
activation value as a function of its net input; 
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L
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where  g(.)  denotes the activation function. 
 
The basic function of the nodes in each layer would be 
defined as follows; 
 
(1). Input layer:  
The nodes in this layer transmit their inputs to layer 2; 
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where i=1,2,….,n and n is the number of the input 
linguistic variables. 
 
(2) Antecedent layer: 
The output from this layer is; 
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where 2
iX is the input to node i in layer 2, and Fi is the 

linguistic label assigned to fuzzy set (small, large,..etc). 
Using equation 3, equation 8 can be rewritten to have: 
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where mij and σσσσij  are the center and width of the bell-
shape function of the ith input of the  jth rule. 
 
(3). Rule layer: 
The output from each node in this layer is dictated by the 
firing strength of the corresponding rule. With the 
proposed scheme (equation 4), the rule nodes perform the 
fuzzy product operation, therefore; 
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where 3

ijX denotes the ith input to node j in layer 3. 
 
(4). Consequent layer: 
The upper node of this layer sums all outputs from the 
rule layer with action strength (yj) and the lower node 
those with unity strength; 
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where N and D are the numerator and denominator of 
equation 4. 
 
(5). Action layer: 
The network output would be pumped out the single node 
layer; 
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2.2. Adaptive fuzzy training algorithm: 
 
Based on the error back propagation algorithm, the goal is 
to determine a fuzzy logic system f(x), in the form of 
equation 4, which minimizes the error function; 
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where P is the number of outputs and dj(k) is the jth 
desired output at time k.
Without loss of generality, multi-input single-output 
(MISO) fuzzy logic system is considered in this paper. A 
multi-output system can be always decomposed into a 
group of single-output systems [10], therefore for P=1, 
equation 14 is reduced to: 
 

( ) ( )( ) ( )( )2kdkxf5.0kE −= (15) 
 
According to equation 4, if the number of rules is M, then 
the problem becomes training the parameters yj, mij, and 
σij such that E(k) is minimized. 
Based on the back propagation training algorithm the 
iterative equations for training the parameters yj, mij, and 
σij  are; 
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where η is the learning rate. Equations 16, 17 and 18 
perform an error back propagation procedure. 
 
3. Fuzzy identifier: 
 
A fuzzy logic system, given in equation 4, can be 
considered as a universal approximator with a back 
propagation training algorithm. This system can be used 
as a system identifier.  
 
3.1. Fuzzy identifier structure: 
 
The series-parallel model enjoys several advantages over 
the parallel model in the case that the plant is stable in the 
bounded-input-bounded-output sense, therefore, the 
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series-parallel model is used in the simulation of fuzzy 
identifier. Sometimes the unknown function is a 
combination of a known linear part and an unknown 
linear part. In this case, the unknown nonlinear part is to 
be modeled by the fuzzy logic system. 
 
3.2. Parameters selection: 
The fuzzy identifier has good parameter choosing method, 
some parameters of the fuzzy identifier which are; the 
learning rate η, and the number of rules M, would be 
selected according to the application. So, what is good for 
one situation is not necessary suitable for another. This is 
due to the adaptive fuzzy system, described in section 2, 
that has no rules to govern the relationships between these 
two parameters. Therefore, experimentation may be 
required to achieve good results. 
 
3.3. Fuzzy identifier adaptation: 
 
On-line adaptation is performed by supervised learning 
algorithm given in equations 16,17, and 18 to obtain the 
optimum values of the parameters yj, mij, and σij 
respectively. This ensures that, for every input, the fuzzy 
system output is sufficiently closed to the desired output 
[7].  
 
4. Simulation results: 
 
In simulation of all time-invariant plants the following 
were considered; 
- A series-parallel identifier was used, where the order 

of the plant must be predetermined. 
- The unknown function represented in general form 

considered in equation 4 with M chosen by trial and 
error. All the nonlinear functions were presented in 
difference equations. 

- Separated functions are used to represent systems 
with combined functions.  

- To evaluate the identifier performance with a time-
invariant system, a test phase is imposed. The output 
of the network is compared with that of the plant on a 
test signal of 250 samples. The test signal consists of 
mixture of sinusoids and constant inputs; 
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In most plants, the parameters yj(0), mij(0), and δij(0) are 
initialized randomly over [-2,2], [-1,1], and [0.01,3] 

respectively. The test signal was applied after 5000 
iterations of random training signal. 
 
4.1 Nonlinear systems: 
 
Plant 1:

[ ] [ ]
[ ] [ ]ku

1ky1
ky

1ky 2
p

p
p +

−+
=+ (20) 

 
To identify this plant [11], a series-parallel model 
described by: 
 

[ ] [ ] [ ]( ) [ ]ku1ky,kyf1ky ppm +−=+ (21) 
 
The resultant mean squared error was 0.55 × 10-3. Figure 
3 shows the output of the plant and that of the network 
model for the given test signal. 

 
Figure 3. Output of plant 1 and its model. 

 
Plant 2:
Consider this plant [10]; 
 

[ ] [ ]( ) [ ]( )
[ ]( ) [ ] [ ]1ky6.0ky3.0ku5sin1.0

ku3sin3.0kusin6.01ky

pp

p
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… (22) 
 
The model will be: 
 

[ ] [ ]( ) [ ] [ ]1ky6.0ky3.0kuf1ky ppm −++=+ (23) 
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Figure 4. Output of plant 2 and its model. 
 
Figure 4 shows the outputs of the plant and the model for 
the given test signal. The parameters yj(0), mij(0) , and 
δij(0) are initialized randomly over [-5,5], [-1,1], and 
[0.001,1] respectively. After 5000 iterations the resultant 
mean squared absolute error was 0.3 × 10-3.

Plant 3: [8] 
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The model will be: 
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Figure 5 illustrates the output of the plant and the trained 
model when applying the test signal. The resultant mean 
squared error was 0.1 × 10-3.

Plant 4: [12] 
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The model will be: 
 

[ ] [ ]( ) [ ]( )kufkyf1ky 2p1m +=+ (27) 

 

Figure 5. Output of plant 3 and its model.  
 
In this test, the resultant mean squared error was 0.1×10-3.
Figure 6 shows the output of the plant and that of the 
network model for the given test signal.  

 
Figure 6. Output of plant 4 and its model. 

 
4.2. Time-varying systems: 
 
In this section, the case of the time-varying system is 
considered. The fuzzy identifier can be trained to 
overcome variation in system parameters such that the 
error between the plant and the model outputs is 
minimized. Let the plant described by equation 28 with 
time varying element a[k] is; 



www.manaraa.com

�

Figure 7. Output of the time-variant system. 
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where the parameter a[k] is given by: 
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The model is; 
 

[ ] [ ] [ ]( ) ]k[u1ky,kyf1ky ppm +−=+ (30) 
 
From figure 7 it can be pointed that the fuzzy identifier 
adapt the variation in many parameters. 
 

4.3. MIMO systems: 
 
Consider the following system [10,13]; 
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and the model will be; 
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Figure 8. Output of the MIMO plant and its model. 

 

Both f1 and f2 in the form of equation 4 with M=40 and 
η=0.5. The identification procedure was carried out for 
5000 time steps using random inputs µ1[k] and µ2[k], 
whose magnitudes were uniformly distributed over [-1,1]. 
Figure 8 shows the resultant outputs of the plant and the 
identification model, where the two inputs (µ1[k] and 
µ2[k]) are sinusoidal. 

 

Figure 9. Output of the MIMO plant and its model. 

 

5. Conclusions: 
 
By simple comparison between a multi-layer perceptron 
(with preceding back propagation training algorithm) and 
the adaptive fuzzy identifier, the following points can be 
pointed out: 
(a).  They are similar in; 
- their basic operation; forward computation and 

backward training, 
- using iterative gradient algorithms to minimize the 

mean square error between the actual and desired 
outputs, 

- both are universal approximators and qualified to 
solve nonlinear problems. 
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(b).  They are different in; 
- the adaptive fuzzy system parameters have clear 

physical meaning, therefore, a suitable initial 
parameters choosing method can be developed, 

- linguistic information can be incorporated into 
adaptive fuzzy system. 

 
The results obtained from the simulation demonstrate 
that; 
- convergence of back propagation training algorithm 

for the fuzzy system is much faster than that of back 
propagation training algorithm for the neural 
network. 

- the fuzzy identifier can achieve similar or better 
performance than that of the neural identifier. 

- after incorporating some linguistic information, the 
fuzzy identifier converges faster to the real system. 
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